Identification of the heterogeneity in water transport through the unsaturated zone of lysimeters using 18-Oxygen

C. Stumpp1), P. Maloszewski1), J. Fank2) and W. Stichler1)

1) GSF-Institute of Groundwater Ecology, Neuherberg, Germany
2) JOANNEUM RESEARCH-Institute for Water Resources Management, Graz, Austria

Objective

• modelling transport processes in the unsaturated zone
• application of environmental isotopes δ^{18}O
• quantification of preferential flow
• description of transport heterogeneity
• influence of vegetation on heterogeneity
• introduction of vulnerability diagrams
Methods

parallel flow system
- matrix flow: \(Q_m(t), C_m(t) \)
 \(\rightarrow \) Richard’s Equation, CDE
- preferential flow: \(Q_c(t), C_c(t) \)
 \(\rightarrow \) Piston Flow

fraction of preferential flow
- \(p(t) = \frac{Q_c(t)}{Q_m(t)} \)
- \(C_c(t) = C_m(t) - C_m(t) \)

\[\omega(\tau_i) = \left(p \int_{\tau_i}^{\tau_{i+1}} g_{PFM}(\tau) d\tau + (1-p) \int_{\tau_i}^{\tau_{i+1}} g_{DM}(\tau) d\tau \right) \times 100\% \]
for \(i = 1, N \)

Vulnerability diagram

\(\omega(\tau_i) \): vulnerability
\(\tau \): transit time of tracer particle [T]
\(p \): mean fraction of direct flow

\(g(\cdot) \): weighting function \(\rightarrow \) transit time distribution function

PPM: Piston Flow Model
DM: Dispersion Model
Lumped parameter approach

\[C_{\text{out}}(t) = \int_{0}^{t} C_{\text{inp}}(\tau) \cdot g(t - \tau) \, d\tau \]

direct flow \rightarrow piston flow model (PFM)

matrix flow \rightarrow dispersion-model (DM)

\[g(\tau) = \delta(\tau - t^*) \]

assumed parameter: \(t^* = 0 \)

\[g(\tau) = \frac{1}{\sqrt{4\pi(P_D)^* \cdot \frac{\tau}{t^*}}} \exp \left[- \frac{(1 - \frac{\tau}{t^*})^2}{4(P_D)^* \cdot \frac{\tau}{t^*}} \right] \]

fitting parameter: \(t^*, P_D^* = D/(vz) \)

Material

- lysimeter at Wagna research station
- maize monoculture
- 1992-2000
 - precipitation
 - leachate
 - isotopes
 - climate data
 \(\rightarrow \) ETp (Allen et al., 1998)
Isotope transport

- Introduction
- Methods
- Material
- Results
- Summary

Lumped parameter approach

- Introduction
- Methods
- Material
- Results
- Summary
Vulnerability diagrams

- fallow/intercrop
- maize monoculture

Water content

mean water content [cm³ cm⁻³]
Qc (mm)

mean water content Qc
Summary

- The presented conceptual model combining hydrological with isotope data enables the separation and quantification of preferential and matrix flow.
- The amount of preferential flow varies between maize vegetation and fallow/intercrop periods.
- Preferential flow is accompanied by an increase of mean water content.
- The fraction of preferential flow is related to the water discharge.
- Determination of flow parameters from the lumped parameter approach together with the fractions of preferential and matrix flow give information about water flux heterogeneity.
- Vulnerability diagrams are constructed based on transit time distributions and are a helpful tool for developing groundwater protection strategies more efficiently.
Thank you for your attention